Towards Computation with RDF Elements

Chutiporn Anutariya', Vilas Wuwongse', Ekawit Nantaj eewarawat” and Kiyoshi Akama

3

ca@cs.ait.ac.th, vw(@cs.ait.ac.th, ekawit@siit.tu.ac.th, akama@complex.eng.hokudai.ac.jp

'Computer Science &
Information Management
Program

Asian Institute of Technology
Pathumtani 12120, Thailand

*Department of Information
Technology
Sirindhorn International
Institute of Technology,
Thammasat University

*Department of Information
Engineering
Faculty of Engineering
Hokkaido University
Sapporo 060, Japan

Pathumtani 12120, Thailand

Abstract

RDF 1s a World Wide Web Consortium
recommendation with emphasis on facilities to
exchange human-readable as well as machine-
understandable information on the Web. However,
computation with RDF data is very limited because
the RDF itself provides users with only an
expressive knowledge/information representation
which has neither computational mechanism nor
query processing capability. Thus, 1t 1s currently
very difficult to manipulate and query RDF data 1n
response to users’ information need.

By employment of the Declarative Program
(DP) theory, this paper proposes a theoretical
framework for the representation of as well as
computation and reasoning with RDF data, and
presents an approach to the formulation and
processing of RDF queries. Since the framework 1s
developed with generality and expressibility In
mind, it allows RDF data to be represented directly
in their XML encoded forms without any necessity
to translate them into other form. Moreover, the
framework facilitates the use of rules to define
relationships between RDF elements, hence allows
the derivation of implicit information in RDF
elements. Consequently, in addition to those simple,
basic queries which are simply based on text/pattern
matching, users can issue the queries about this
derived information. Various examples of RDF
inference rules as well as queries are also presented
“1n the paper.

Keywords: Declarative Program, RDF element,
RDF program, RDF query processing

1 Introduction

Resource Description Framework (RDF) 1s a
unified, conceptual framework for encoding,
exchange and reuse of structured metadata with a
mechanism for the distribution of both Auman-
readable and machine-understandable =~ Web

112

information [11]. By means of RDF data,-users may
not only represent and describe contents of Web
resources in a more machine-processable manner,
but may also be able to more accurately formulate
specific queries yielding highly relevant and precise
answers. However, computation with RDF data 1s
very limited because the present formulation of RDF
data, encoded 1n XML (eXtensible Markup
Language) [4] syntax (to be referred to as RDF
elements), does not address an inference or
reasoning mechanism. Other means of computation
which go beyond simple text/pattern matching are
not readily devised. The RDF Schema (RDFS)
Specification [5] includes features that need some
basic inference facilities. For example, 1t contains
transitive constructs such as subClassOf and
subPropertyOf which include the notion of
implication [7, 9]. subPropertyOf construct 1s used
to specify that one property is a specialization of
another. For example, if Property Editor 1s a
subproperty of Property Contributor, and 1t an editor
of a resource, say X, is John Smith, then it 1s implied
that John Smith 1s also a contributor of the resource

X. subClassOf construct 1s used to indicate

subclass/superclass relation between classes. If, for
instance, ElectronicMail 1s a subclass of
ElectronicDocument which 1s also a subclass of
ElectronicResource, then ElectronicMail 1s also
implicitly a subclass of ElectronicResource; hence,
resources that are instances of Class ElectronicMail
will also be instances of Class ElectronicResource.
Therefore, a search for resources 1n a general
category should also examine resources In more
specific categories.

In addition, to allow effective processing of RDF
data, the knowledge/information representation
providled by the RDF data model solely 1s
insufficient; there arises an essential need for a
standard query language for RDF, which enables
users as well as agents to query and gather RDF data
that precisely meet their requirements. Recently,
there have been certain attempts to develop syntax
and specifications for RDF query languages [7, 8,
12, 13]. Many of them, such as RDF Query [12], are

expressed in terms of XML syntax, using their
predefined RDF Schemas or XML DTDs. Moreover,
since RDF 1s defined using XML syntax, certain
proposals apply a query language for XML, such as
XOL [15] or XML-QL [8], as a query language for
RDF. These proposals, however, aim at constructing
user-friendly languages rather than providing
effective computational mechanisms to process a
query and obtain its results. Metalog [13] and F-
logic [7] approaches, on the other hand, view RDF
statements — triples of subjects, predicates and
objects — as binary predicates in logic programming
and as F-logic formulas, respectively, in order to
provide the ability to reason with RDF statements.
The processing of RDF queries are then pertformed
on these corresponding translations instead of direct
operation on RDF statements or on theirr XML
encoded forms. '

This paper attempts to develop a theoretical
framework for the representation of RDF data and
their relationships, which allows RDF data to be
expressed directly in terms of XML syntax without
any need for translation into other form. In addition,
the framework provides a foundation for the
development of computational mechanisms to
effectively manipulate and reason about RDF
elements, which will be useful for information
retrieval, query processing, transformation, assembly
and filtering.

The proposed approach employs Declarative
Program (DP) theory [1, 2] — a generalization of the
conventional logic program theory, in which terms
are generalized into any data objects and
substitutions into specializations. The theory has
been developed with generality and applicability to
data structures of any domains, each of which 1s
characterized by a mathematical structure, called a
specialization system. Employing the DP theory, this
paper formulates an appropriate specialization
system for RDF elements, and then develops a
theory for RDF Programs. An RDF program
comprises facts and rules which together describe
resources and their relationships as well as some
other derivable information. By means of the RDF
program theory, this paper also develops an
approach to the formulation and processing ot RDF
queries, which not only facilitates the selective
retrieval and construction of .RDF data, but also
supports the reasoning capability. This would hence
enable one to query about implicit information
contained in RDF data. Furthermore, since RDF
queries represented in other query languages can be
easily translated 1into the proposed query
formulation, one can employ XQL or XML-QL, for
example, as an interface language and then apply the
proposed approach to effectively execute the issued
queries. Thus, the proposed approach can be utilized

113

as the foundation for the processing of RDF queries
expressed in other query languages.

Section 2 recalls fundamental definitions of the
DP theory, Section 3 develops a specialization
system for RDF elements and RDF Programs,
Section 4 models Web resources, Section 5 presents
RDF query formulation by means of RDF definite
clauses and Section 6 draws conclusions.

2 Declarative Program Theory

A specialization system 1s an abstract structure
derived from the generalization of substitutions 1n
the conventional logic program theory, and defined
in terms of certain simple axioms. Formally, a

specialization system is a quadruple I' =<_4 ¢ S
u > of three sets _4 ¢, S and a mapping x4 from &

to partial map(_A), ie., the set of all partial
mappings on _#, such that:

1. Vs, 8, € § 3s € S u(s) = s;) °ulsy),
2. s € S Vae A: u(s)a)=a,
3. < A

where 14s;) °u(s,) 1s the composite mapping of the
partial mappings £(s;) and z(s;). The set (is called

the interpretation domain, the elements of _4 (and

S are

specializations, respectively. When u 1s clear from
the context, for @ € S 1(6)(a) will be written simply

as a . If there exists b such that a@= b, @ 1s said to
be applicable to a, and a is specialized to b by 6.
Given a € _4, denote the set of all ground atoms that

called objects, and

ground objects,

are specialized from a by rep(a), i.e.,forge (, g €
rep(a) iff there exists a specialization 8 in S such
that af=g.

A definite clause, or simply called a clause, on I

1s a formula of the form H « B,, B,, ..., B,, where H,
B\, B,, ..., B, are objects in _4, often referred to as

atoms. H 1s called the head and (B,, B, ..., B,) the

body of the clause. Let C be a definite clause (H <«
By, B,, ..., B,). The head of C will be denoted by
head(C) and the set of all atoms in the body of C by
body(C). A clause C is called a unit clause 1f body

(C) 1s empty. A clause C’1san instance of C 1ftf there

s a specialization @ € S'such that @ 1s applicable to

H, Bl, BQ, ees Bn and C'=C60 = (HH . Blg, Bzg, -
B,0). A clause C is a ground clause 1ff all atoms in C
are ground atoms in (.

A Declarative Program on I 1s a (possibly
infinite) set of definite clauses on _4 Let P be a

Declarative Program on I. The declarative

semantics of P, AM(P), 1s a set of ground atoms
defined by

M(P) = U[Tp]n(g) ,
n=]

where @ is the empty set, [Tp]"(D) = To([Tp]" (D))
and the mapping Tp: 2°>2% is defined as follows:

for each I ¢ (, g € Tp(I) iff there exist a clause C €

P and a specialization & € S such that C@ 1is a

ground clause the head of which 1s g and all the
atoms 1n the body of which belong to /.

3 Specialization System for RDF
Elements and RDF Programs

RDF data model instances encoded in XML
syntax (called RDF elements) are defined either in
serialization or abbreviated syntax. The serialization
syntax expresses the full capabilities of the RDF
data model, while the abbreviated syntax includes
additional constructs in order to provide a more
compact form for representation of a subset of the
data model. This paper considers only the
serialization syntax.

By convention, RDF elements are ground, 1.e.,
they contain no variable. However, in order to
express 1mplicit information contained in RDF
elements, the RDF elements introduced 1n this paper
can contain variables. The formal definition of RDF

elements (with variables) will be given later 1n this
section.

Next a specialization system for RDF elements, '
R = <_4, Gy Sk, g > will be constructed. Assume

that Ag 1s an alphabet comprising the symbols in the
following sets:

1. X : asetof characters,
2. T : aset of tag names,
3. B : aset of attribute names (or qualifiers),

4. TVAR : a set of tag-name-variables (or T-
variables),

5. BVAR : a set of attribute-name-variables (or
B-variables),

. SVAR a set of string-variables (or S-
variables),

. PVAR : a set of attribute-value-pair-variables
(or P-variables),

. EVAR : a set of element-variables (or E-
variables), and

114

9. IVAR : a set of intermediate-element-variables
(or I-variables).

1-, B-, §-, P-, E- and /-variables introduced here
are useful for the expression of implicit information
contained in RDF elements. Intuitively, a 7-variable
will be instantiated to a tag name in 7, a B-variable
an attribute name in B and an S-variable a string in
", while a P- and an E-variable will be specialized
to attribute-value pairs and RDF elements,
respectively. The use of /-variables will be explained
later. In order to distinguish between elements of the
above sets, assume that:

1. Every element in TVAR begins with “$T:”,
BVAR with “$B:”, SVAR with “$5:”, PVAR
with “sp:”, EVAR with “$E:” and /[VAR with
GG$ I : 'H‘

. No element in T and B begins with “$T:” and
“$B:”, respectively, and ‘S’ ¢ 2.

An RDF element on Ay 1s defined recursively as
follows:

1. evar € EVAR

2. <tag pvar; pvary attr;=val,
attr,,=val,,/ >
3. <tag pvar, pvar, attr;=val,

attrp,=val,,> val, </tag>

. <tag pvar, ... pvary attr;=val, ... attr,,=val,>

e ... e, </tag>

5. <ivar> val; </ivar>

6. <ivar>e; ... e, </ivar>
where -/, m,n=0,
-tag € T W TVAR,
- pvar; € PVAR,

- attr; € B U BVAR,
-val; € £ U SVAR,
- ivar € IVAR, and

- the ¢; are RDF elements on Ag.

In general, the order of the pvar; (P-variables),
the order of the pairs atfr= val; (pairs of attribute
name and value) and the order of the e; (RDF
elements) are immaterial. Only the order of those ¢;

nested 1n rdf:Seq elements 1s considered to be
significant.

Let _4 be the set of all RDF elements on Ag and
(r the subset of _4 that consists of all ground
(variable-free) RDF elements in _4.

Let sX:P-Holder be a special, reserved variable
which 1s not included 1n Ai. An intermediate element
on Ag has a similar form as an RDF element on Ag

except that 1t always has exactly one occurrence of

the variable $X:P-Holder nested inside, while an

RDF element does not contain any occurrence of

$X:P-Holder. Then, let _% be the set of all
intermediate elements on Ag.

Let D be (TVAR x TVAR) U (BVAR x BVAR) U

(SVAR x SVAR) U (PVAR x PVAR) U (EVAR x
EVAR) U (IVAR x IVAR) U (PVAR x (PVAR x
PVAR)) U (EVAR x (EVAR x EVAR)) U (EVAR U
PVAR x {€}) U (TVAR x T) U (BVAR x B) U (SVAR
x £) U (PVAR x (BVAR x SVAR)) U (EVAR x _4)

O (IVAR x %). Elements of ; are -called
restrictions. Let a € 4. The specialization mapping
Vk: Lp = partial map(_4) is defined as follows:

1. Variable Renaming

When d = (var,, var,) € (TVAR x TVAR) U
(BVAR x BVAR) U (SVAR x SVAR) U (PVAR

x PVAR) U (EVAR x EVAR) U (IVAR X
IVAR),

vr(d)(a) 1s obtained from a by replacing all
occurrences of var; 1n a by var,.

. Variable Expansion

When d = (var, (vary, var,)) € (PVAR X

(PVAR x PVAR)) U (EVAR x (EVAR x
EVAR)),

vr(d)(a) 1s obtained from a by replacing all
occurrences of var in a by the sequence var,
vars.

3. Variable Removal

When d = (var, €) € (EVAR U PVAR x
{€}), where & denotes the null symbol,
VR(d)(d) is obtained from a by removing all
occurrences of var 1n a.

. Variable Instantiation

When d = (var, value) € (TVAR x T) U
(BVAR x B) U (SVAR x ¥') U (PVAR x
(BVAR x SVAR)) U (EVAR x _4),

vr(d)(a) 1s obtained from a by replacing all
occurrences of var in a by value.

When d = (ivar, e) € IVAR x %,

115

vr(d)(a) 1s obtained from a by replacing each
ivar element nested in a by the intermediate

element e and replacing the variable $x:p-

Holder In e by the content of that occurrence
of ivar element.

From the definitions of -2y and the specialization

mapping Vv, which 1s used to determine the
application of each restriction d € 2y to an atom a €

_“k, there are four types of restrictions:

1. the restrictions that rename variables,

2. the restrictions that expand P- or E-variables
to sequences of variables of their respective

types,

3. the restrictions that remove P- or E-variables,
and

. the restrictions that instantiate variables to
some values which correspond to the types of
the wvariables, 1.e., a 7-variable can be
instantiated into only a tag name, a B-variable
an attribute name, an S-variable a string, a P-
variable an attribute-value pair, an E-variable
an RDF element and an [/-variable an
intermediate element.

Next, let S, =2 , i.e., the set of all sequences of
restrictions. Based on v, the mapping uz: S —

partial map(_+4) is defined by:

Ur(A)(a) = a, where A denotes the null sequence,

pr(d - s)(a) = ur(s)(vr(d)(a)), where d € Iy, s €
\Sjg and a € _/4}3.

That is, for each a € _4 and s € S, where s is a
sequence d| d ...d,,n=>20,d;e Drpandi=1, ..., n, u

r(s)(a) 1s obtained by successive applications of d|,

d,, ..., and d, to a. Also note that zz(s)(a) 1s defined
only when all restrictions 1n s are successively
applicable to a.

In the sequel, let I'x = <_4, Gz, Sk, 4z >. From
the definitions of the sets _4, Gz, Sz and the
mapping ug, 1t 1s readily seen that I'; 1s "a
specialization system. The definitions of RDF
definite clauses, RDF Programs and the declarative

semantics of an RDF program are therefore obtained
directly from the DP theory (cf Section 2).

4 Modeling of Web Resources

A Web resource described by RDF data can be
represented directly as a ground RDF element in (.

A class of Web resources containing certain similar

properties can also be represented as an RDF

element with variables; these variables are used to

represent unknown or dissimilar properties among
those resources 1n the class. For example, to
represent a set of Web pages written by John Smith,
one can simply construct an RDF element containing
Creator property the value of which i1s John Smith,
where other properties that vary from one another,
such as Title and Language, are expressed implicitly
through the use of variables. In addition to this
simple representation, the proposed approach
facilitates the use of rules to define (possibly
complex) relationships between RDF elements. A
rule 1s simply written as an RDF definite clause. A
collection of Web resources, probably contains
resources of different types each with different
properties, can be specified by an RDF program P
which 1s the union of a set of unit clauses — called
facts, representing selected Web resources, and a set
of non-unit clauses, representing rules. These rules
are employed to derive information that 1s implicit in
RDF elements. The declarative meaning of P, which
1s obtained by applying the rules to the set of atomic
facts, then vyield all the directly represented
information together with all the derived information
of the resources in the specified collection. Thus, by
means of the RDF and the proposed approach,
today’s Web — the vast unstructured mass of
information can be transformed into a rich
knowledge base rather than being merely a gigantic
information repository.

Example 1 Let P be a program on [z, comprising
the following seven clauses:

C\:<rdf:Description
about="http://www.w3.0rg/TR/rdf-intro”>

<dc:Title>

Introduction to RDF data
</dc:Title>
<dc:Creator resource

=“http://www.nokia.com/staffID/85740"/>
<dc:Publisher>

The World Wide Web Consortium
</dc:Publisher>
<dc:Type>Note</dc:Type>
<dc:Language>en</dc:Language>

</rdf:Description> €=,

C,:<rdf:Description
about="“http://www.w3.0rg/TR/rdf-syntax”>

<dc:Title>The RDF Model and Syntax

</dc:Title>

<dc:Creator resource
=“http://www.nokia.com/staffID/85740"/>

<dc:Creator resource
=“http://www.w3.0rg/staffID/12345"/>

<dc:Publisher>The World Wide Web Consortium

</dc:Publisher>

<dc:Type>Technical Report</dc:Type>

<dc:Language>en</dc:Language>

</rdf:Description> =

C;: <rdf:Description
about="http://www.nokia.com/staffID/85740">
<v:Name>Ora Lassila</v:Name>
<v:Email>lassila@research.nokia.com
</v:Email>
<v:Affiliation>Nokia Research Center
</v:Affiliation>

116

</ rdfiDescription> <

C4. <rdf:Description
about=“http://www.w3.0org/staffID/12345">
<v:Name>Ralph R. Swick</v:Name>
<v:Email>swick@w3.org</v:Email>
<v:Affiliation>
The World Wide Web Consortium
</v:Affiliation>

</rdf:Description> .

Cs:<SI:AnyElement>W3C</$I:AnyElement>

= <$I:AnyElement>

The World Wide Web Consortium
</$I:AnyElement>.

Cs. <rdf:Description about=$S:RefResource>

<CanSpeak>$S:Lang</CanSpeak>
SE:PersonProperties
</rdf:Description>

P

<rdf:Description
about=$S:RefResource>
SE:PersonProperties

</rdf:Description>,

<rdf:Description about=$S:URI>
<dc:Creator
resource=3S:RefResource/>
<dc:Language>$S:Lang
</dc:Language>
SE:DocProperties

</rdf:Description>.

C7:<$I1:AnyElement>
<$T:RefTag>
<rdf:Description about=$S:URI>
SE:PropertyElements
</rdf:Description>
</$T:RefTag>
</$1:AnyElement>

< <§I:AnyElement>
<$T:RefTag rdf:resource=$S:URI/>

</$I1:AnyElement>,

<rdf:Description about=$S:URI>
SE:PropertyElements

</rdf:Description>.

This program specifies a collection of Web
resources, which contains four resources described

by means of Dublin Core [16] and vCard [10]

schemas, using the namespaces dc and v,
respectively. The unit clauses (facts) C,, C,, (5 and
C, represent RDF elements describing those
resources in the collection. The clause Cs gives the
abbreviated name of the World Wide Web
Consortium; clause Cg adds the property CanSpeak
to the descriptions of persons, basing on the
knowledge that i1f a person has written a document 1n
a particular language, he/she must be able to speak
that language; and, clause C; combines the content
of a referring resource with the description of its
referenced resource, 1.e., the entire Description
element of the referenced resource will become a
nested element of that referring resource. The
following nested Description, for instance, 1s
derivable from the program P by specializing the
two body atoms of the clause C; into the facts C,

and C; (more formally, this nested Description is
contained in [Tp]' (D) < M(P)).

<rdf:Description
about="http://www.w3.0rg/TR/rdf-intro”>
<dc:Title>Introduction to RDF data</dc:Title>
<dc:Creator>
<rdf:Description
about="“http://www.nokia.com/staffID/85740">
<v:Name>Ora Lassila</v:Name>
<v:Email>
lassilal@research.nokia.com
</v:Email>
<v:Affiliation>Nokia Research Center
</v:Affiliation>
</rdf:Description>
</dc:Creator>
<dc:Publisher>The World Wide Web Consortium
</dc:Publisher>
<dc:Type>Note</dc:Type>
<dc:Lang>en</dc:Lang>
</rdf:Description>

The program P given in Example 1 will be used
in the rest of this paper.

S Query Formulation

An approach to the formulation of RDF query by
means of RDF definite clauses will be presented.
Here, a query 1s represented by a collection of one or
more rules, each of which 1s simply written as a
definite clause C, where head(C) describes the
structure of the resulting RDF elements and body(C)
describes selection criteria required by the query.
Each query will be executed on some specified
collection of Web resources, defined by means of an
RDF program, and will return as its answer a set of
RDF elements which describe those resources
satisfying all the conditions of the query. Besides
simply returning RDF elements which describe
qualifying resources, 1t 1s possible to create a new
element with the desirable structure from those
selected elements. This can be achieved by an
appropriate definition of the head atom. Moreover,
since each query executes on a set of RDF elements
and returns also a set of RDF elements, 1t 1s possible
to 1ssue a query against the result of another query,
1.e., nested.queries can be readily formulated.

With respect to the specified Web resource
collection represented by an RDF program, the
answer to a query 1s obtained by successive
equivalent transformation [2] of the formulated
query rules until they have become ground unit-
clauses [3]. However, the detailed steps of how to
execute a query and obtain its result set are beyond
the scope of this paper.

The following subsections explain the
formulation of all the basic query operations —
projection, selection and transformation — that a
particular query language for RDF should provide;
these basic operations are suggested by [12, 14].

117

S.1 Projection

A query, which returns a set of resource
descriptions with only selected properties, can be
expressed as a single rule. The body of the rule
consists of a single atom representing resources with
complete descriptions. The head atom of the rule

then extracts the required properties and constructs
the projection results.

Example 2 (Projection) A query g; which returns
only title and publisher of all resources having

information about their titles and publishers in the

collection 1s formulated as:
Ry: <answer>
<rdf:Description>
<dc:Title>$S:Title</dc:Title>
<dc:Publisher>
$S:Publisher
</dc:Publisher>
</rdf:Description>
</answer>

€ <rdf:Description about=$S:URI>
<dciTitle>sS:Title</do:Tit ke
<dc:Publisher>
$S:Publisher
</dc:Publisher>
SE:PropertyElements

</rdf:Description>.

The body atom of R, represents all the resources In
the collection which have at least title and
publisher properties. For each of these resources,
the contents of the two properties are bound to the S-
variables $S:Title and $S:Publisher,
respectively, and 1f the resource has some other
properties, they will be represented by the E-variable
SE:PropertyElements. The head atom of R,
specifies that the resulting resource descriptions
contain only title and publisher properties.

5.2 Selection

Selection of resources which satisty given
conditions can be expressed by one or more rules
depending on the relationship between each
selection condition, 1.e.,

- Selection conditions formed by AND will be
expressed as a single rule.

- Selection conditions formed by OR are similar
to selection using each condition separately
and then combination of their results;
therefore, the OR of » conditions can be
expressed by » rules.

Each rule can contain one or more body atoms.
These body atoms are used to represent the RDF
elements to be selected. Joining of two or more body
atoms (in the same rule) 1s achieved by an
appropriate use of variables or values to specify the
joined data.

Example 3 (Expressing the AND of two selection
conditions) Let g, represent a query which returns
the descriptions of those resources the author’s
names and resource types of which are Ora Lassila
AND Technical Report, respectively. This query g
can be formulated as a single rule:

R,: <answer>
<rdf:Description about=$S:URI> .
<dc:Creator resource=$S:RefResource/>
<dc:Type>Technical Report</dc:Type>
SE:PropertyElements
</rdf:Description>
</answer>
€~ <rdf:Description about=$S:RefResource>

<v:name>Ora Lassila</v:name>
SE:PropertyElementsOfOra

</rdf:Description> ,

<rdf:Description about=$S:URI>
<dc:Creator resource=$S:RefResource/>
<dc:Type>Technical Report</dc:Type>

SE:PropertyElements

</rdf:Description>.

Notice that the value of Creator property for
each document-typed resource in the collection is a
reference to another resource. Thus, to select all
Technical Reports written by Ora Lassila, the rule R,
1s formulated with two atoms in the body. The first
body atom represents the individual whose name is
Ora Lassila and refers to the identifier of this

individual by the S-variable $S:RefResource. The
second body atom then represents all Technical
Reports 1n the collection which are written by the
individual referred to by $S:RefResource, 1.€., the
one whose name 1s Ora Lassila. The head of R,
defines the answer elements each of which contains
the description of each selected resource.

Alternatively, the query g, can be equivalently

expressed by:
R, : <answer>
<rdf:Description about=$S:URI>
<dc:Creator>
<rdf:Description $P:1>
<v:Name>QOra Lassila</v:name>
SE:PropertyElementsOfOra
</rdf:Description>
</dc:Creator>
<dc:Type>Technical Report</dc:Type>
SE:PropertyElements
</rdf:Description>
</answer>

<_.

<rdf:Description about=$S:URI>
<dc:Creator>
<rdf:Description $P:1>
<v:Name>Ora Lassila</v:name>
SE:PropertyElementsOfOra
</rdf:Description>
</dc:Creator>
<dc:Type>Technical Report</dc:Type>
SE:PropertyElements

</rdf:Description>.

By means of the rule C; (cf. Example 1), which
integrates the description of the referenced resource

116

Into the description of each referring resource, users
have the ability to directly specify queries’ selection
criteria using nested RDF elements. Hence, instead
of having two body atoms representing the selection

criteria as in R,, R," contains only one body atom
which explicitly specifies that Name property of any

Creator elements nested within Descriptions of
Technical Reports must be Ora Lassila.

Example 4 (Joining elements by values) The query
g3, which returns those resources written by the one
who has also written the resource located at

http://www.w3.0rg/TR/rec-xml/, can be

formulated as:
R3: <answer>
<rdf:Description about=$S:URI> . *
<dc:Creator resource=$S:CreatorURI/>
SE:PropertyElements?2
</rdf:Description>
</answer>

€< <rdf:Description

about="http://www.w3.0rqg/TR/rec-xml/">
<dc:Creator resource=$S:CreatorURI/>
SE:PropertyElementsl

</rdf:Description> ,

<rdf:Description about=$S:URI>
<dc:Creator resource=S$S:CreatorURI/>
SE:PropertyElements?2

</rdf:Description>.

Here, the rule R; 1s formulated with two atoms in
the body, which will be denoted by b3, and b;,,
respectively. The atom b3, represents the resource
located at http://www.w3.0rg/TR/rec-xml/ the
creator of which is identified by the S-variable
$S:CreatorURI. The atom b3, then represents all
resources 1n the collection the creators of which are
also the creator of the resource represented by b3,.
The occurrences of $S:CreatorURI in both b5, and
bs; clearly specify that (at least) one of the creators
of the resource represented by b;; must also be one
of the creators of the resources represented by b;,.

5.3 Transformation

The transformation of RDF elements conforming
to one schema into another i1s expressed by a rule
with single body atom, where its head and its body
atom, respectively, represent the resulting elements
and the original elements. This query operation is
very useful especially for interchange of RDF
elements. In the simplest case, the transformation
involves merely renaming particular property names
into others without restructuring the original
elements. For example, one can simply issue a query
which selects all Technical Reports in the collection
and renames Creator property of those resources to

Author. A more complicated example involves
creation of new RDF elements which group multiple
elements according to the specified properties. For
Instance, a user may wish to group together the

resources with the same author, 1.e., for each author,

an RDF container which comprises a set of

resources written by that particular author would be
created. Other examples of very complex queries are
those that perform aggregation functions, such as
count(), min() and max(), on sets of RDF elements.
Formulation and processing of complex
transformation queries which concern set
construction, set manipulation and aggregation
functions are parts of the theory being developed.

6 Conclusions

Encountering the problems of manipulating and
querying RDF data, this paper has proposed a
theoretical framework that formally extends the
RDF data model with the computation and query
processing capabilities. Based on the DP theory,
which 1s general and applicable to data structures of
any particular domains, the framework allows RDF
elements — the representations of RDF data encoded
in XML syntax — to be directly operable. In
addition, the framework facilitates the use of rules to
define relationships between RDF elements, hence
allows the expression of not only simple queries that
are based on text/pattern matching, but also those
that question about implicit information in RDF
elements. As one can see, the primary advantages of
the DP approach over others are twofold: (i) it
encourages the ability to effectively compute and
reason with RDF data, and (11) 1ts expressive power
allows RDF data to be represented directly in their
XML encoded forms without any necessity and
overheads to translate them into other form, which
would help provide a more insight into computation
with structured information in RDF elements.

Future research works include the development
of query optimization techniques as well as the
implementation of a prototype system which will
help demonstrate and evaluate the effectiveness of
the proposed framework. Moreover, in order to
enforce integrity constraints on RDF data, the
framework can be extended to manipulate and
handle XML namespaces, RDF schemas [5] and

path and type constraints [6].

References

1. Akama, K. Declarative Semantics of Logic
Programs on Parameterized Representation

Systems. Advances in Software Science and
Technology, Vol. 5, pp. 45-63, 1993.

2. Akama, K., Shimitzu, T. and Miyamoto, E.
Solving Problems by Equivalent Transformation
of Declarative Programs (in Japanese). Journal
of the Japanese Society of Artificial Intelligence

(to appear).

3. Anutariya, C., Wuwongse, V., Nantajeewarawat,
E. and Akama, K. Resource Description

119

10.

11.

12.

13.

14.

15.

16.

Framework (RDF) Programs. Technical Report,
Computer Science and Information Management
Program, Asian Institute of Technology, 1998.

Bray, T., Paoli, J. and Sperberg-McQueen, C.M.
Extensible Markup Language (XML) 1.0.
http.//www.w3.org/TR/REC-xml, 1998.

Brickley, D., Guha, R.V. and Layman, A.
Resource Description Framework (RDF)
Schema Specification. ,
hitp://www.w3.0org/TR/WD-rdf-schema-
19981030/, 1998.

Buneman, P., Fan, W. and Weinstein, S.
Interaction between Path and Type Constraints.
Technical Report, Department of Computer
Science and Information Science, University of
Pennsylvania, 1998

Decker, S., Brickley, D., Saarela, J. and Angele,
J. A Query and Inference Service for RDF.
http.// www.purl.org/net/rdf/papers/QL98-
queryservice-19981118, 1998.

Deutsch, A., Fernandez, M., Florescu, D., Levy,
A. and Suciu, D. XML-QL: A Query Language
for XML. http://www.w3.0org/TR/NOTE-xml-ql-
[9980819.html, 1998.

Guha, R.V., Lssila, O., Miller, E. and Brickley,
D. Enabling Inferencing.

hitp.// www.w3.org/TandS/QL/QL98/pp/
enabling. html, 1998.

Internet Mail Consortium. vCard: the Electronic
Business Card.

http.://www.imc.org/pdi/vcardwhite. html, 1998.

Lassila, O. and Swick, R.R. Resource
Description Framework (RDF) Model and
Syntax Specification.

http:// www.w3.0rg/TR/WD-rdf-syntax-
19981008, 1998. '

Malhotra, A. and Sundaresan, N. RDF Query
Specification.

http.//www.w3.org/TandS/QL/QL98/pp/rdfquery.
html, 1998.

Marchiori, M. and Saarela, J. Query + Metadata
+ Logic = Metalog.
http://www.w3.org/TandS/QL/QL98/pp/metalog.
html, 1998.

Quass, D. Ten Features Necessary for an XML
Query Language.

http.//www.w3.org/TandS/OL/QL98/pp/quass. ht
ml, 1998.

Robie, J., Lapp, J. and Schach, D. XML Query
Language (XQL).
http.//www.w3.org/TandS/QL/QL98/pp/xql. html,
1998.

Dublin Core Metadata Initiative. Dublin Core
Metadata Element Set: Reference Description.
http.//purl.org/DC/about/element set.htm, 1997

