On Contextual Queries for XML Documents Using
Namespaces

Hiroko Kinutani, Masatoshi Yoshikawa, Yohei Yamamoto,
Takahiro Morimoto and Shunsuke Umeura
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0101, Japan

{hiroko-k, yosikawa, yohei-y, taka-mo, uemura}@is.aist-nara.ac.jp

A bstract

The “Namespaces in XML” and the emerging
“XML Schema” are important standards in the
family of the XML (eXtensible Markup Lan-
guage). These concepts enable us to use element
types and attributes defined as external names-
paces or schemas with own element types and
attributes. Consequently, there will be a large
number of well-formed XML documents having
different top—level structures and having the same
bottom-level structures. The emergence of a new
type of the structure of XML documents requires
a new type of efficient retrieval mechanism.

In this paper, we describe the retrieval of the con-
text nodes by specifying the scope of subtree us-

Ing namespaces in the bottom-level structure of
XML documents automatically.

keywords: XML, Namespace, Structured Doc-
uments, Ambiguous Queries

1 Introduction

XML[4], recommended by W3C(World Wide
Web Consortium) and related specifications, such
as “Namespaces in XML”[5], “XML Schema”[6,
7], show us new technologies to process XML doc-
uments having new types of structures. By refer-
ring schemas defined as namespaces, we are able
to exchange documents and data with element

types and attributes having common definitions.
Using these features, an XML document can re-
fer any namespace. In this situation, XML doc-
uments can be classified into the following four

types:
1. Valid documents with only one independent
schema; .
2. Valid documents referring other schemas;
3. Well-formed documents including valid

components referring other schemas; and
4. Well-formed documents with no schema.

Most of conventional researches and techniques
are directed toward 1. and 2.. In this paper, we
focus on 3. to make sure the features of these

157

1 <?xml version="1.0"7>

2 <books xmlns:dc=
"http://purl.org/metadata/dublin_core/dc.xsd"

xmlns:isbn="http://isbn.org/isbn.xsd">

3 <publisher pcode="8303">

<dc:publisher>NAIST Publishing Inc.
</dc:publisher>

</publisher>

<book>

<creators>

<dc:creator>Hiroko</dc:creator>

W

© 00 N O O

<dc:creator>Yohei</dc:creator>
10 </creators>

11 <dc:title>XML Processing</dc:title>

12 <1sbn:number>4-89470-073-0</isbn:number>

13 </book>

14 <book> _

15 <dc:creator>Taka</dc:creator>

16 <dc:title>Multimedia Databases
</dc:title>

17 <isbn:number>0-589092-2</isbn:number>

18 </book>

19 </books>

Figure 1: A sample digital library XML docu-

ment |

XML documents, and we introduce the notion of
on contextual queries for XML documents using
namespaces.

This paper 1s organized as follows. First, we
describe XML Schema, XML namespaces and the

problems of queries using those specifications in
Section 2. In Section 3, we propose a function
context to retrieve context nodes using names-
paces. Finally, we conclude and show future work
In Section 4.

2 XML schema and namespace

The XML Namespace Recommendation[5] ex-
tends the data model of XML to allow element

o) @xmins: dc 5,5 i

P @xmlns :1sbn o f-.f

-Eil @PUb lishe Q5

@book

A .dc

£ Bcreat

http //purl org/etadata/dubhn core/dc def:

http //1sbn Org/Ibbﬂ x_sd

" @pcode ...

: pub llsher

A @dc creator.f

“8303”

i NAIST Publlshlng R

A) dc : creator

XML Procebmn g

'-i ------

-
.............
I 2 I T R A =R R S S - TS N B i R G e e A SR Bl B S E S etl BeRE S St AR I B - S R SR R S -0 T S SR M- B S - B S R

e le e e BB T :

s " E
L L] L8 L] Ll I L] Ll L] I - L] r I L) L] L I L] [L I' L] L} l| L L] 1 - R A e e S S B W Y A T U N Sl S T Bl e S el S A B T T - Rl R

A iizlsbn* number

‘O 19 53902-- £

Figure 2: Tree representation of the XML document 1n Fig.1

type names and attribute names to be qualified

with URIs. On the other hand, XML Schema de-

scribes that the URI refer to an instance of XML
schema. It means that a set of names defined 1n

a namespace 1s treated similarly as the set of el-
ement types and attribute names defined 1n the
referring schema. 'Therefore, we can refer some

namespaces combining some schema modules 1n
order to create a desired schema.

Fig. 1 1s a sample XML document of digital
library. In line 2, two kinds of namespaces are

defined. One of them refers to the XML schema
defined at

“http://purl.org/metadata/dublin_core/dc.xsd”

and element types and attributes defined there
are qualified with prefix “dc¢”. Similarly, the XML
schema defined at “http://isbn.org/isbn.xsd”
qualifies element types and attributes with prefix
“Isbn”.
tributes qualified with these prefixes are the same
in every XML document referring to these names-
paces. In contrast, element types and attributes

with no prefix are independent of other XML doc-
uments. Consequently, XML documents referring

to the same namespaces have different top—level
structures and the same bottom—level structure.

F1g. 2 depicts a tree representation of the XML
document 1n Fig. 1. Nodes are numbered from 1

to 16 1n depth first order; element nodes with cir-
cle and attribute nodes with triangle. The nodes
belonging to the scope of a reserved namespace
with prefix “xmlins” are 2 and 3. The nodes be-
longing to the scope of a namespace with prefix
“dc” are 6, 9, 10, 11, 14 and 15. Also, the nodes
belonging to the scope of a namespace with prefix
“1sbn” are 12 and 16. The rest of element types

and attributes,1, 4, 5, 7, 8 and 13 do not have
any namespace, and do not have schema defini-

The structure of element types and at-

152

tions anywhere.

2.1 Queries of XML documents using
namespaces

Until now, many query languages for XML
documents have been proposed|3|. However, the

query language of XML documents has not been
recommended by W3C yet. XQL[1, 2] is a query
languages for XML documents. XQL contains
several features including joins, text containment
and extensible functions. XQL also includes the
queries using namespaces. In XQL definition, a
‘context’ 1s the set of nodes against which a query
operates. XQL allows a query to select between
using the current context as the mmput context
and using the root context as the mmput context.
A query prefixed with °/’ uses the root context.
A query may use the child operator °/’, and a
query may also use the ‘//’ operator to indicate
recursive descendants. Attribute names are al-
ways prefixed with ‘@Q’. They are treated as chil-
dren of the elements to which they belong. Wild-
cards ‘*’ select all nodes 1n the context. The fil-
ter operator ‘[|’ filters the set of nodes to its left
based on the conditions inside the brackets. Mul-

tiple conditions may be combined using Boolean
operators; “and”, or, “union”(|), “intersect” and

“both”(7). The followings are the examples of
XQL using elements qualified with namespaces:
(1) Find all number elements belong to the
namespace “http://isbn.org/isbn.xsd”.

isbn := ‘‘http://isbn.org/isbn.xsd’’;

//isbn:number

(2) Find all books where the units attributes

belong to the namespace
“http://ecommerce.org/edi.xsd” is equal to
(CYen?? .

edi := ‘‘http://ecommerce.org/edi.xsd’’;

//book[Qedi:units=‘‘Yen’’]

(3) Find all books where the publication
date elements belong to the namespace

“http://purl.org/metadata/dublin_core/dc.xsd

)

1s betore January 1, 1999.

dc := ‘‘http://purl.org/metadata
/dublin_core/dc.xsd’’:

//book[.//*[dc:date]
1t date(‘1999-01-01")]

The followings are the issues of queries for
XML documents with namespaces:

e Since XML recommendation allows well-
formed documents, documents with un-
known structure can be the target to re-

trieve. Consequently, 1t 1s important for
querles based on ambiguous structure con-
ditions.

¢ While the set of nodes can be retrieved

with namespaces, 1t 1s difficult to retrieve
the fragments which has relations with the

specified namespaces semantically. There-
fore, 1t 1s difficult to merge subtrees from
one document source into another docu-

ment subtree with the namespace’s ele-
ments eftectively.

3 Find context nodes using names-
paces

As XML namespace and the XML Schema are

becoming widely used, there will be many well-
formed XML documents with the same names-
paces. 'Those XML documents have different
top—level structures and the same bottom-level
structure. FEach of those XML documents has
no schema definition as a whole, but the part of
those documents are referring to the same schema
definitions as the namespaces. It is difficult for
users and applications to know the exact path to
query those XML documents. They can specify
only the elements or the attributes belonging to

those namespaces. Consequently, when we want
to know the relationship between default names-
pace’s element /attribute and query namespace’s
element /attribute, i1t 1s necessary to extract the
domain of the context relative to the specified
namespace 1n those XML documents.

In this section, we investigate how to find con-
text nodes in XML documents when the name of
element types or attributes belonging to certain
namespaces are specified 1n queries.

For XML documents used in this section,
we assume that those documents (1)use names-
paces,and (2)have no relation among each names-

153

paces. Therefore, in the domain of namespace
A, element types or attributes belonging to B
should not include element types or attributes of
A and vice versa.(This assumption is suitable for
the case where 1t 1s not allowed to import other
schemas when we define a schema.) The notation
of queriles 1s based on XQL.

3.1 Context of ssmple XML queries

Let us consider the case to manage well-
formed digital library XML documents in Fig 1.
We suppose that user who 1ssues queries know
the Dublin Core namespace in which the book
schema 1s defined with element types:; “title” and
“creator”.

At first, we study simple XML queries using
a namespace.

Query la:

dc:=‘‘http://purl.org/metadata/
dublin_core/dc.xsd’’;

//*[dc:title contains ‘‘XML’’]

In the Query 1a, from the root node of this
document structure, we search nodes through ev-
ery path which 1s the element node named “title”
defined at Dublin Core namespace and which con-
tains the character strings “XML”. The result of
this query 1s a parent node set, at least one of
whose child node satisfies the above filter condi-
tions. That 1s the node 7 in Fig. 2. The path
expression of this result 1s /books/book[0]. It is
recognized that we extract the node 7 subtree as a
contextual unit with related elements of dc:title.

Query 16b:

[i/*[dc:creator]

In the Query 1b, from the root node, we search
nodes through every path which i1s the element
node named “creator” defined at Dublin Core
namespace. The result of this query 1s a parent
node set, at least one of whose child node satis-
fies the above filter conditions. Those are node
8 and 13 in Fig. 2. Considering that dc:creator
indicates author or writer, the node 7 and 13 are
more appropriate. When the authors of well-
formed XML documents use ad-hoc element sets,
1t 1s difficult to extract these nodes using these

parent/child, ascendant /descendant operators in
XQL.

To extract maximal domain of the context
concerning the specified namespaces’ conditions,
we 1ntroduce a function context. This function
computes a set of context nodes to specify sub-
trees relative to the specified namespace in the
bottom-level structure of XML documents auto-
matically. This context function can be imple-
mented as a user defined function in XQL.

Definition 1 (Context) For a set of nodes n

XML document, the function context computes
a set of nodes of subtrees, each of those sub-
trees 1s a maximal subtree having different path

expressions each other except sibling relationship
path expression wncluding specified namespace’s
element or attribute. Consequently, both the argu-

ment and value of the context are sets of nodes
in the XML documents.

Query 1c:
(1) context(//*[dc:title contains ‘‘XML’’])

= context({/books/book[0] })
= { /books/book[0] }

(2) context(//*[dc:creator])

= context({/books/book[0]/creators,
/books/book[1] })

= { /books/book[0], /books/book[1] }

In (1) and (2) of the Query Ic, the function
context are computed by the result nodes of
XML queries in Query 1a and Query 1b, respec-
tively. In Fig. 2, the result node of (1) 1s 7, and
result nodes of (2) are both 7 and 13. The XML
document are divided into disjoint fragment by
“dc:creator”.

3.2 Context of conjunctive XML queries

Next, we study conjunctive XML queries using
namespaces. Consider the case to extract subtree
that has at least one creator element and the ti-
tle element which contains the character strings
“XML” simultaneously, and both elements are
defined at Dublin Core namespace. Query 2a 1s
a query specifying this condition 1n XQL. The
“and” operator combines two XQL query. For in-
stance, let ql and q2 be XML queries, “ql and
q2” returns true when the intersection of ql and
q2 1s non—empty, else returns false.
Query 2a:

//*[.//*[dc:creator] and |
.//*[dc:titlg_cpntains “*XML?7]]

In the Query 2a, from the root node of
this document structure, node are searched
through every path which has descendant element
“dc:creator” and descendant element which con-
tains character strings “XML” simultaneously.
The result nodes are both 1 and 7. However,
node 1 1s not appropriate because there are
two /books/book/dc:title paths which are not
in a sibling relationship. Therefore, the subtree
rooted with the node 1 1s too large for the context
of our intension.

Query 2b 1s the modification of above Query
2a. The value of the function context 1s a set of
nodes of subtrees each of those subtrees 1s a max-
imal subtree having different path expressions

154

each other except sibling relationship path ex-
pression including specified namespace’s element
type or attribute. That 1s node 7 1n Fig 2.
Query 2b:

context(//*[.//[dc:creator] and
.//[dc:title contains ‘‘XML’’]])

context({ /books, /books/book[0] })
= {/books/book[0] }

In this section, We have introduced both con-
text of simple XML queries and context of con-

junctive queries.

4 Conclusions

In this paper, we have articulated .the prob-
lems of queries with namespaces and introduced a
function context to retrieve context nodes using

namespaces. |
The followings are the future work:

e Developing algorithm of fully-operational
function context;
e Designing indices suitable for XML docu-

ments with namespaces. Especially, for the
purpose of bottom-up search in the tree;

and
e Implementation and evaluation of this algo-
rithm.

References

[1] Jonathan Robie, Joe Lapp, and David Schach:
“XML Query Language (XQL)”,

http://www.w3.org/TandS/QL/QL98/pp/xql.html,

Sep 1998.

[2] Jonathan Robie: “XQL (XML Query
Language)”, http://metalab.unc.edu/xql/xql-
proposal.xml, Aug 1999.

3] World Wide Web Con-
sortium: “QL’98 - The Query Languages Work-
shop”, http://www.w3.org/TandS/QL/QL98/,
December 1998.

(4] World Wide Web Con-
sortium: “Extensible Markup Language (XML)

1.0, http://www.w3.org/TR/1998/REC-xml-

19980210, W3C Recommendation 10-February-
1998, Feb 1998.

5} World Wide Web Consortium: “Namespaces
in XML”, http://www.w3.org/TR/1999/REC-

xml-names-19990114/, W3C Recommendation
14-January-1999. Jan 1999.

6] World Wide Web Consortium: “XML Schema

Part 1:
Structures”, http://www.w3.0rg/1999/05/06-

xmlschema-1/, W3C Working Draft 06-May-
1999, May 1999.

7] World Wide Web Consortium: “XML Schema

Part 2:
Datatypes”, http://www.w3.0org/1999/05/06-

xmlschema-2/, W3C Working Draft 06-May-
1999, May 1999.

